scite_
The Internet, life-saving vaccines, space telescopes, pasteurization, gene-editing, and the smartphone in your pocket – these breakthroughs were all made possible by scientific research.
but how do we know what to trust?

“In the biomedical field alone, more than 1 million papers pour into the PubMed database each year — about two papers per minute.”

“science has a reproducibility problem and the ramifications are widespread.”

nature

The New York Times
we built scite to make research easier to understand
Smart citations for better research

The most efficient way to discover and understand research. Using Smart Citations, easily check how a scientific article has been cited and if its findings have been supported or contrasted by others.

Start now →

837m citation statements extracted and analyzed from over 24m full-text articles
Citation counts, journal names, and views/downloads provide limited information.

Chromosome mis-segregation and cytokinesis failure in trisomic human cells

Joshua M Nicholson, Joana C Macedo, Aaron J Mattingly, Darawalee Wangsa, Jordi Camps, Vera Lima, Ana M Gomes, Sofia Dória, Thomas Ried

Virginia Tech, United States; Universidade do Porto, Portugal; National Institutes of Health, United States

Research Article · May 5, 2015

Cited 46 Views 7,761 Annotations 0

Cite as: eLife 2015;4:e05068 DOI: 10.7554/eLife.05068

Abstract

Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive

Of interest

3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice

Lukas Ded et al.

Research Article · Updated Dec 1, 2020
Smart Citations show how an article has been cited

Chromosome mis-segregation and cytokinesis failure in trisomic human cells

Joshua M Nicholson, Joana C Macedo, Aaron J Mattingly, Darawalee Wangsa, Jordi Camps, Vera Lima, Ana M Gomes, Sofia Dória, Thomas Ried, Elsa Logarinho, Daniela Cimini

Abstract: Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to t...

Cited by 34 papers (61 citation statements)

- "...Compared to the diploid parental line, the frequencies of chromosome missegregation and micronuclei formation were significantly elevated in most PTA clones (Figure 2A) but not in the tetraploid line (Figure 2A). In agreement with previous work (Nicholson et al., 2015), the trisomic clones showed similar aberrations, albeit to a lesser extent (Supplemental Figure S2B). Furthermore, we observed an increase of structural aberrations in PTA lines and, consistent with earlier work (Kuznetsova et al., 2015; Passerini et al., 2016), also in trisomic clones (Figure 2B)...."

- "...To independently confirm the observed chromosome instability, RPE +18+18 aneuploid cells were treated with..."
11 machine learning models with 20 to 30 features each used to extract citation information

citation classification

1 deep learning model to classify statement as supporting, contrasting, or mentioning (trained on ~50k citation statements)
Where are we today?

849,033,477
citation statements
24,970,616 journal articles
citing

44,217,134 journal articles
ingesting
~100,000 PDFs per day
who we’ve partnered with
A better way to discover and evaluate scientific articles

“We have been investigating a lot of 'smart' solutions and integrations for the publishing sector. We think that Scite is one of the most innovative, useful and ready to go tools.”

-Product Manager, Manuscript Manager
Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3

Jinnan Yue, Dacheng Lv, Caiyun Wang, Ling Li, Qingnan Zhao, Hongzhuan Chen, Lu Xu

Abstract: All lung cancer patients with epidermal growth factor receptor (EGFR) mutation inevitably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). In up to 30% of cases, the mechanism underlying acquired resistance remains unknown. MicroRNAs (miRNAs) are a group of small non-coding RNAs commonly dysregulated in human cancers and have been implicated in therapy resistance. The aim of this study was to understand the roles of novel miRNAs in acquired EGFR TKI resistance in EGFR-mutant non-small cell lung cancer (NSCLC). Here, we reported the evidence of miR-483-3p silencing and epithelial-to-mesenchymal transition (EMT) phenotype in both in vitro and in vivo EGFR-mutant NSCLC models with acquired resistance to gefitinib. In these tumor models, forced expression of miR-483-3p efficiently increased sensitivity of gefitinib-resistant lung cancer cells to gefitinib by inhibiting proliferation and promoting apoptosis. Moreover, miR-483-3p reversed EMT and inhibited migration, invasion, and metastasis of gefitinib-resistant lung cancer cells. Mechanistically, miR-483-3p directly targeted integrin β3, and thus repressed downstream FAK/Erk signaling pathway. Furthermore, the silencing of miR-483-3p in gefitinib-resistant lung cancer cells was due to hypermethylation of its own promoter. Taken together, our data identify miR-483-3p as a promising target for combination therapy to overcome acquired EGFR TKI resistance in EGFR-mutant NSCLC.

44 references detected 15,871 total citations 1 references with a retraction

"...These discrepancies would be explained that miR-483-3p has opposite functions depending on its cellular context. It is not unusual of a miRNA that exerts distinct function in cancer depending on tumor type, tumor state and/or genetic background, such as miR-31 [38,39]. In order to understand the roles of miR-483-3p in the tumorigenesis of lung adenocarcinoma, we examined the miR-483-3p level in lung adenocarcinoma compared with matching adjacent non-tumor tissues using multiple miRNA expression profiling data sets from TCGA and GEO database (Fig...."

researchers can use scite to become better researchers

I have started seamlessly and immediately using @scite for following references between documents to find out how information is received in a broader academic context.

As might be imagined, considering how many fields error detection crosses, this is PHENOMENALLY useful.

I think I found gold, this is sooo cool! was exciting to try this with some papers, searching literature is now even more fun! can't wait for the database to grow [SUPPORTING retweet +1]

This is pretty cool! For example, my PhD work is supported by two other papers and not contradicted (yet): scite.ai/reports/contr...
Every time I’m exploring a complicated topic from scratch, I’m using this,” Heathers says of Scite.ai. “The sentiment analysis seems to work really well,” he adds, referring to how Scite.ai categorizes positive and negative citations.” - James Heathers, PhD

“This is a really cool tool. I just tried it out on a paper we wrote on flu/pneumococcal seasonality...really interesting to see the results were affirmed by other studies. I had no idea. Thank you for sharing this.” - Professor David Fisman, University of Toronto
have justified its creation. However, it is interesting to speculate whether transformational or any other automatic analysis of such a paragraph could produce a useful additional "marker" which would describe briefly the kind of relationship that exists between the citing and cited documents.

These "markers" would appear in the published citation index along with the usual citation data. In the case of the paragraph above, for example, "critique" or one of several other terse statements like "Mr. X is wrong," "data spurious," "conclusions wrong," "calamity for mankind," etc., might be appropriate. The "intelligent" machine would examine a new document and generate a critical statement such as "rather poor paper." As we have seen before, there is nothing magical about the

Stevens, M.E., Giuliano, V.E., & Garfield, E. (1964). Can Citation Indexing Be Automated?
Questions?

hi@scite.ai
@scite